Designing and Implementing a Data Science Solution on Azure

The Azure Data Scientist applies their knowledge of data science and machine learning to implementing and running machine learning workloads on Microsoft Azure; in particular, using Azure Machine Learning Service. This entails planning and creating a suitable working environment for data science workloads on Azure, running data experiments and training predictive models, managing and optimizing models, and deploying machine learning models into production.

M-DP-100

Durée

3 jours

groupe cible

This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud.

contenu (new)

Module 1: Introduction to Azure Machine Learning
In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace.

  • Getting Started with Azure Machine Learning
  • Azure Machine Learning Tools

Module 2: No-Code Machine Learning with Designer
This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume.

  • Training Models with Designer
  • Publishing Models with Designer

Module 3: Running Experiments and Training Models
In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models.

  • Introduction to Experiments
  • Training and Registering Models

Module 4: Working with Data
Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments.

  • Working with Datastores
  • Working with Datasets

Module 5: Compute Contexts
One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs.

  • Working with Environments
  • Working with Compute Targets

Module 6: Orchestrating Operations with Pipelines
Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module.

  • Introduction to Pipelines
  • Publishing and Running Pipelines

Module 7: Deploying and Consuming Models
Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing.

  • Real-time Inferencing
  • Batch Inferencing

Module 8: Training Optimal Models
By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data.

  • Hyperparameter Tuning
  • Automated Machine Learning

Module 9: Interpreting Models
Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behavior. This module describes how you can interpret models to explain how feature importance determines their predictions.

  • Introduction to Model Interpretation
  • using Model Explainers

Module 10: Monitoring Models
After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data.

  • Monitoring Models with Application Insights
  • Monitoring Data Drift

Prérequis

Before attending this course, you must have:

  • A fundamental knowledge of Microsoft Azure
  • Experience of writing Python code to work with data, using libraries such as Numpy, Pandas, and Matplotlib.
  • Understanding of data science; including how to prepare data, and train machine learning models using common machine learning libraries such as Scikit-Learn, PyTorch, or Tensorflow.

Notre promesse qualité

Appeler notre Service Center

DE+49 (0) 711 90363245

CH+41 (0) 584 595795

AT+43 (01) 33 2353160

FR+41 (0) 584 595454

EN+49 (0) 711 90363245

DA+49 (0) 711 90363245

emailTraining@trivadis.com

Tarif spécial pour une réservation à l’avance

Réserve ta formation au 3 ou 6 mois avant le début du cours et profite du Flexprice Trivadis.

> 6 mois> 3 mois0–3 mois
2'280.00 CHF2'570.00 CHF2'850.00 CHF
LieuDateLangueprix 
Zürich / CH
18.11. - 20.11.2020
DE2'570.00 CHF
Formations sur site à la demande !demande
  •    E-Learning
  •    Standard
  •    Réalisation garantie
  •    Avec votre réservation le déroulement du cours est garanti
  •    Ce cours est complet. En vous enregistrant, vous serez automatiquement inscrit sur la liste d'attente.

  • Ce cours a lieu dans un autre pays. En raison des différences de fiscalité vous devez le réserver séparément. Merci beaucoup pour votre compréhension.
Retour aux formations
0 articles dans le panier

Demander une formation interne en entreprise exclusive

In order for us to be able to inform you by telephone or e-mail about Trivadis offers and products in the future, we require your consent. Your consent is voluntary and you can revoke it at any time without giving reasons informally by telephone, in writing or by e-mail at info@trivadis.com. We might forward your personal data to a call centre so that we can contact you and inform you about Trivadis products and offers.

Trivadis, Bernd Rössler, Head of Training

Bernd Rössler

  • Solution Manager Trivadis Training
  • Téléphone: +41 (0) 584 595454

    E-Mail: Training@trivadis.com

    « Je réponds volontiers à vos questions concernant par exemple :  le coaching individuel, les ateliers, l'accompagnement de projets, les formations en ligne. »

    Bernd Rössler

<h3>Fixez mainteant un rendez-vous de conseil</h3>

Damit wir Sie auch in Zukunft telefonisch oder per E-Mail über die Trivadis Angebote und Produkte informieren können, benötigen wir Ihre Einwilligung. Ihre Einwilligung ist freiwillig und Sie können diese jederzeit ohne Angabe von Gründen formlos telefonisch oder schriftlich oder per E-Mail unter info@trivadis.com widerrufen. Ihre personenbezogenen Daten werden von uns an ein CallCenter weitergegeben, sodass wir Sie auch auf diesem Weg kontaktieren und über Trivadis Produkte und Angebote informieren können.

trivadis training satisfaction client

Garantie qualité

À l'issue de chaque formation, nous récoltons les avis des participants sur :

  • Le confort de la salle de cours et de la place de travail.
  • Le fonctionnement de l'équipement,
  • le contenu du cours / le séminaire,

ces avis sont rassemblé à des fins d'assurance qualité dans notre système d'évaluation TRIVALUTION. Nous garantissons ainsi le niveau de qualité et de satisfaction de nos nombreux clients enthousiastes, qui nous attribuent la note générale de 9,3 sur 10.

 

trivadis training succès garanti

Garantie de réussite

Trivadis vous garantit une formation réussie. Des questions surviennent quand vous retournez à la pratique ? Vous souhaitez refaire certains exercices dans l'environnement test ?

Avec notre garantie de réussite, vous avez la possibilité de refaire gratuitement certains jours de formation, ou la formation complète, durant les six mois suivants votre participation. Dans ce cas, vous utilisez les supports de cours dont vous disposez déjà.